IMPLEMENTATION OF THE HIGH LEVEL ARCHITECTURE INTO
DIS-BASED LEGACY SIMULATIONS

Wesley K. Braudaway, Ph.D
Science Applications International Corporation
3045 Technology Parkway
Orlando, FL 32826
and
Susan M. Harkrider
USA STRICOM
12350 Research Parkway
Orlando, FL 32826

KEYWORDS
High Level Architecture; Prototype Federation; DIS Legacy ReEngineering

ABSTRACT
The High Level Architecture (HLA) is a project to develop a simulation infrastructure to promote interoperability
between simulations. The Defense Modeling and Simulation Office (DMSO) commissioned several experimental
applications of HLA in 1996 to test and refine the HLA concept. As one of these experiments the Semi-Automated
Forces (SAF) subsystems of the Close Combat Tactical Trainer (CCTT) were modified as a case study within a
federation of three other DIS, platform-level simulation systems. In this paper, we describe the modifications made
to CCTT SAF in order to incorporate the HLA into the CCTT SAF infrastructure.

1.0 BACKGROUND

The High Level Architecture (HLA) is a DoD-wide effort sponsored by the Defense Modeling and Simulation Office
(DMSO) to aid in the establishment of a common technical framework. This framework facilitates the
interoperability of all types of models and simulations, and facilitates the reuse of Modeling and Simulation (M&S)
components. Initial definition of the M&S HLA was accomplished under the sponsorship of the Advanced Research
Projects Agency’s (ARPA) Advanced Distributed Simulation (ADS) program. It was transitioned to the DMSO in
March 1995 for further development by the Architecture Management Group (AMG). For the effort, a set of
prototypes were developed to address critical issues of the HLA. Each prototype, or federate, represented a major
program, with both Government and industry technical teams. The experience of these prototypes helped to
establish the HLA baseline, which was completed on 21 August 1996. The Under Secretary of Defense for
Acquisition and Technology (USD(A&T)) approved the baseline as the standard technical architecture for all DoD
simulations on 10 September 1996. The HLA, as a part of the common technical framework, is defined by three
major components: the rules or functional definition; the object model template specification; and the interface
specification. [1][2][3]

At this point, it may be useful to define several terms used by the HLA community, such as federate, federation,
Runtime Infrastructure, simulation object model, and federation object model. A federate is a member of a HLA
federation. A federate may include federate managers, data collectors, live entity surrogate simulations, model
simulations or passive viewers. A federation is a named set of interacting federates, a common federation object
model, and supporting Runtime Infrastructure, that are used as a whole to achieve a specific objective. The Runtime
Infrastructure (RTI) is the general purpose distributed operating system software which provides the common
interface services during the runtime of an HLA federation. To facilitate the formation of a federation, each federate is
required to develop a Simulation Object Model (SOM). A SOM is a specification of the intrinsic capabilities that an
individual simulation publicly offers to federations. The standard format in which SOMs are expressed provides a
means for federation developers to determine the suitability of simulation systems to assume specific roles within a
federation. Once the federation has been formed, the Federation Object Model (FOM) is developed. A FOM is an
identification of the essential classes of objects, object attributes, and object interactions that are supported by a HLA
federation.

This paper describes defines compliance as it exists today, defines the process of implementing HLA in DIS
systems, and then provides an assessment of that integration. The paper also addresses open issues for DIS as part
of the HLA, and capabilities that will be available in the near future.

2.0 COMPLIANCE

Compliance is currently defined as how well a federate handles the functions defined in the HLA interface
specification, whether it has an object model in conformance with the Object Model Template (OMT), and whether
it complies with the HLA rules for federates. The interface specification functions are as described in paragraph 3.1.2
of this paper. The OMT provides the format to specify the objects intrinsic to a given federate or federation. The
HLA rules separate the regulations between those for federates and those for federations, with an equal number of
rules for each.

Federation rules can be summarized to state that in order to achieve compliance:
Federations shall have a HLA FOM documented in accordance with the OMT;
Representation of objects in the FOM shall be in federates, not the RTI;
Exchange of FOM data shall occur via the RTI during federation execution;
Federates shall interact with the RTI in accordance with the HLA interface specification during federation
execution; and,
During a federation execution, an attribute of an object’s instance shall be owned by only one federate at any
given time.

Slmllarly, rules for federates can be summarized:
Federates shall have a HLA SOM, documented in accordance with the OMT,;
Federates shall be able to update and/or reflect any object attributes in their SOM, and send and/or receive SOM
interactions externally;
Federates shall be able to transfer and/or accept ownership of attributes dynamically during federation execution,
as specified by a federate’s SOM;
Federates shall be able to vary the conditions under which updates of object attributes are provided; and,

Federates shall be able to manage local time such that they can coordinate data exchange with other members of
a federation.

For clarity, compliance is different than federation testing, which is the responsibility of individual federations. The
HLA was tested prior to the baseline definition through the prototypes. The prototypes provided a variety of
conditions and scenarios which addressed a range of potential DoD M&S applications. Another dimension of
testing, performance testing, took place in the proto-federations using a common performance measurement
framework and a common interface test procedure. The feedback from the proto-federations was used to revise the
existing test procedures as a supporting document to the HLA baseline.

3.0 IMPLEMENTING HLA COMPLIANCE

To re-engineer a legacy DIS system into a HLA compliant federate requires developers to define a SOM, to integrate
the RTI Interface and HLA functionality into the system, and transform the system’s DIS oriented data model into
the new SOM data representation. This section describes the integration tasks and describes the re-engineering case
study for the SAF subsystem of the CCTT system.

3.1 HLA Integration Tasks

The major re-engineering design decisions can be characterized along three dimensions: the degree to which the
system’s capabilities are to be shared with other federation members, the degree to which the system will support
and utilize the HLA services, and the degree to which the system’s data model is modified to match its new SOM.
The first dimension affects the definition of the system object model and depends strongly on the system’s role in a
range of federations. The second dimension determines the amount of modification required to support previously
unsupported system capabilities that are now provided using the HLA (for example, simulation modeling ownership
transfer). The third dimension affects the extent to which the legacy system’s data flows and data model are
modified to achieve HLA compliance. Each of these dimensions are discussed further in this section.

3.1.1 System and Federation Object Model

The SOM development is the first design step of re-engineering a system to become HLA compliant. The more
completely the SOM describes the system’s total capacity for publicly representing its objects, attributes, and
interaction, the more system re-engineering effort will be required to implement HLA compliance. However, only
those system capabilities represented within the SOM can be shared with other federates in a HLA compliant
implementation. The SOM is used as critical information for determining the composition of federations and the
specification of a federation object model (FOM) that specifies all public data shared among the federates. Some re-
engineering effort might be saved if after considering the range of federations in which the system may participate, the
full set of system capabilities are not required. In this case, transforming the system’s complete communication
capabilities will not be necessary.

Therefore, to design the SOM, both the role of the system in a range of federations and a set of typical scenarios for
the federations can be helpful for designing the objects, attributes, interactions, and transmission policies of the
SOM. The SOM (and the FOM for a federation) are represented using the format defined by the HLA Object Model
Template [3].

As more DIS legacy systems are re-engineered for HLA compliance, a set of “DIS reference FOMs” or DIS FOM
standards will emerge that will reduce the re-engineering effort and maximize the reuse of modified DIS systems in
many platform oriented federations. The need for DIS FOM standardization stems from the flexibility provided by
the HLA OMT for defining SOMs and FOMSs. To transform the DIS protocol into an object model several basic
design decisions become apparent: What is the object hierarchy for a DIS FOM? What are the set of important
attributes for each object? What are the interactions? One option, for example, is to define a FOM object hierarchy
that matches the DIS enumeration hierarchy. While this will produce a large number of object classes (one for each
type of simulated entity) it maximizes the use of HLA'’s class-based filtering. A second approach is to encode the
Entity State Protocol Data Unit (PDU) as a FOM class where its attributes correspond to the attributes of the Entity
State PDU. Since the options are numerous, a proliferation of individual DIS like federations will emerge with little
chance of being interoperable without a reference DIS FOM.

3.1.2 Interface Functionality

The second major task of re-engineering a system for HLA compliance is to map the HLA interface services to the
supportable capabilities of the system. The RTI implements the HLA interface which provides support for
federation management, declaration management, object management, ownership management, time management,

and data distribution management services. To redesign a system as an HLA federate, the system will not only
interface to and use services of the RTI but also provide services (Federate Services) that respond to RTI’s callbacks.
The extent to which a system can implement or can be extended to implement the HLA functionality depends on its
capabilities and its roles in a set of anticipated federations.

Federation Management Service This service includes Create, Join, Pause/Resume, Save/Restore actions on a
Federation Execution. The extent to which this service corresponds to existing system capabilities will influence
the effort necessary to re-engineer these capabilities.

Declaration Management Service This service includes Publish, Subscribe, and Control actions on specific
classes and interactions. DIS systems expect to send and receive all public information available and have never
specifically requested particular classes of information, specified the classes they will transmit, or accepted control
specifying when to start or stop individual object transmissions. These extended capabilities will be required for
any HLA re-engineered effort.

Object Management Service This service includes Requesting ID numbers, Updating object attributes, Sending
interactions, Receiving object updates, Receiving interactions, Deleting objects, and Changing transportation
characteristics. These capabilities are new to DIS legacy systems other than the transmission capability of sending a
complete entity state PDU with a minimum update rate. For re-engineering, the new options include sending only
changed attributes, sending only a subset of attributes at a minimum rate, and changing the characteristics of the
transmission (i.e., reliable, best effort, receive order, time stamp ordered, etc.).

Another important issue for DIS systems is the assignment of object IDs. DIS applications are responsible for
generating their own IDs and usually attach some semantics to the ID such as a site number, application number,
and entity number within the application. For HLA the ID is generated by the RTI and is meaningless to the
applications except to uniquely identify an object. If the DIS system depends on the semantics associated with the
DIS entity ID then this information must be explicitly maintained within the designed FOM.

Ownership Management Service This service implements the transfer of simulation responsibility for individual
object attributes between federates. Although DIS applications have occasionally had a requirement to transfer entity
ownership, the DIS standard has not effectively supported this requirement and most systems have either removed
the requirement or have used some non-standard method for implementation. In either case, to utilize this service
will require considerable re-engineering effort.

Time Management Service DIS legacy systems typically run in real-time and have their own means for
synchronizing and managing the passage of simulation time. The current HLA time management service provides
support for time-step and event-driven simulation systems but offer no standard time management support for
platform level real-time simulations.

Data Distribution Management Service This service provides federate control over the routing of attributes based
on the attributes’ data values. This is a new capability to DIS legacy since DIS systems typically use a data
broadcast approach. Recent DIS developments, however, have utilized multicast network capabilities to help filter
DIS traffic at least by exercise number if not also by geographic characteristics of the data. This HLA service
provides a means for implementing these multicast capabilities and may provide more extensive data distribution
management than previously available to DIS legacy systems.

3.1.3 Data Model Translation

The internal data model implemented by a DIS legacy system will likely differ substantially from the resulting
SOM that will be implemented to make the system HLA compliant. Some means of transforming the system’s
data model into the SOM data model must be conducted as part of the re-engineering effort. This is the third major
task in re-engineering a DIS system to HLA compliance. Since the DIS system was designed to communicate
using the DIS protocol syntax externally, much of its internal data model will be oriented toward this DIS protocol
syntax. To communicate with other federates using objects, attributes, and interactions defined by a FOM, some
transformation of this internal data model must be conducted as part of the re-engineering task. Alternatively some
run-time translation must be implemented in the data flow between the DIS simulation application and the RTI
interface. The next section describes these alternatives in more detail.

3.2 Implementation Methods and Implications

Several design options are available for transforming an existing DIS compliant system into a HLA compliant
system. The approaches can be characterized as either a gateway approach or some level of object model integration.
Figure 1 shows three levels of HLA integration: a gateway approach, a transport layer integration, and a complete
HLA integration. In each approach the data model transformation occurs at some phase of the re-engineering
development

In the first approach, Gateway, the federate communicates through its network connection using the DIS protocol. A
DIS Converter captures this DIS communication from the network and transforms it into an Object/Attribute
Database for communication using the HLA services provided by the RTI. The data model translation occurs
during run-time in the gateway process. Although this is the simplest approach for implementing HLA compliance
with respect to the impact on the legacy system, the throughput of the resulting DIS Converter is likely to be lower
than can be tolerated. Additionally, the application’s use of the HLA services are limited to those that can be
represented directly using DIS, thereby limiting the advantages of becoming HLA compliant.

The second alternative, Transport Layer Integration, integrates an RTI interface module into the transport layer of
the application. In this approach the data model translation to the FOM is conducted within the transport layer
before leaving the system’s run-time environment. The simulation application of the system will continue to use its
DIS oriented data structures as they flow to the transport layer where they are translated into FOM values. Using
this approach there is little or no impact to the DIS application assuming that the system architecture isolates the
simulation application from the transportation mechanisms. While this alternative removes the latency issues of the
gateway approach and requires minimal re-engineering effort, it does incur some latency by translating the
application’s internal DIS-oriented data model into FOM objects and interactions.

Complete sk
! - Upgraded DIS Layer
Integrationf | New Application Kg:)pncaﬂon |na:yegrati on

Data Objects, DIS Enumerations)
Interest Statements Interest Statementd
|HLA RTI I/F Moduld HLA RTI I/F Module|

Intra-RTI Comms 0
i [BtARTIVEModulg |Gateway

i | DISHLA Gateway

!

>

. - [DIS Protocol §

: Unmodified Unmodified
! DIS DIS
: Simulation Simulation

Figure 1. DIS Legacy Integration Approaches
The third alternative is a complete integration of HLA into the simulation application. Through this approach, the
data models within the application would be transformed into objects and behaviors represented by the system’s
SOM. The internal data would not be influenced by the DIS protocol representation but would be made more
general in terms of communicated objects, attributes and interactions. Hence the data model transformation is
conducted during the re-engineering rather than as a function of the run-time implementation.

3.3 CCTT SAF Case study

The STRICOM/PM CATT Close Combat Tactical Trainer (CCTT) is the first fully Distributed Interactive
Simulation (DIS) compliant training system that will train Armor, Cavalry, and Mechanized Infantry platoons
through Battalion/Task Forces on their doctrinal Mission Training Plan collective tasks. The system consists of
networked vehicle simulator manned-modules in combination with Semi-Automated Forces (SAF), and other
workstation systems. The SAF system has the capacity to create a wide variety of friendly or opposing force units
and vehicles that exhibit highly realistic behaviors to support the CCTT training objectives.

CCTT SAF was modified as a case study within a federation of three other DIS, platform-level simulation systems
to demonstrate and evaluate the HLA approach. This case study also served to expose the issues involved in re-
engineering a DIS application for HLA compliance.

3.3.1 Scope of the Federation Object Model

The FOM developed for this DIS study was based upon the sole objective of using the current capabilities of the
four platform-oriented simulation systems to test the concepts of the HLA. With this objective, a scenario was
developed that represented a somewhat realistic battlefield occurrence, used the predominate capabilities of each
federate, and tested some of the key HLA capabilities (e.g., ownership transfer, class/attribute type filtering). The
FOM was specifically developed to support this one scenario and represented a small subset of the SOMs provided
by each federate in the study.

As a DIS-based federation, the FOM (especially its earlier versions) represented a small portion of the data model
defined by the DIS 2.0.4 standard. The object class structure was essentially equivalent to the DIS Entity
enumeration for those entities identified in the scenario. The attribute table applied to all entities and included all
attributes as specified by the Entity State PDU. The Collision, Detonation, and Fire PDUs were translated into
FOM interactions in this FOM. The federation made a strong assumption that data values and semantics of object
updates and interactions were documented by the DIS 2.0.4 standard and were not discussed or documented as part
of the FOM development.

For this case study, the FOM did not include nor test the implications of Simulation Management, Event
Reporting, the SAF command and control protocol, the Synthetic Environments protocol, radio transmissions, re-
supply, repair, and other critical capabilities of CCTT. Because some of these capabilities are critical to operation of
the CCTT SAF system, some existing DIS communication capability was retained by the prototype CCTT SAF
design described in this report. A complete re-engineering for HLA compliance would not require this DIS
communication flow.

3.3.2 CCTT Architecture

Each simulation application within the current CCTT baseline has an architecture as shown in

Figure 2. Some number of simulation or workstation application processes on a single processor access an entity
database and PDU input/output queues contained in shared memory. A separate Entity Processor process maintains
the dynamic state of the entity database and the DIS Network Manager process manages the flow of DIS PDUs to
and from a FDDI Network. The Entity Processor maintains the dead reckoning of relevant remote entities and
determines whether local entity information should be transmitted to other simulations To minimize latency, the
DIS Network Manager places incoming DIS Entity State PDUs into a holding area in the entity database, where
they are subsequently processed by the Entity Process to make the data available to applications. Likewise, for each
local entity update that are to be transmitted, the Entity Process places these entities by reference into the PDU
Queue for processing by the DIS Network Manager. The DIS Network Manager uses this reference to directly access
the Entity State PDU in the Entity Database and send it to the FDDI Network. This method is facilitated by the
DIS Entity State PDU format of each entity in the entity database; therefore, the Entity Processor and the DIS
Network Manager operate on the same DIS data model.

FDDI
Network
! Transport Layer Shared
i Memory
; Enity | Entity I Entity
; Processor Database| Database
: \ API

; Entity Stal d pplication
i PDUs Process

i | DISNetwork | PDU | Networkd
| Manager ueues AP

Figure 2. CCTT Baseline Architecture

3.3.3 System Architecture Design Summary

For this HLA case study, the Entity Processor and the DIS Network Manager of CCTT’s transport layer were
modified to communicate FOM data using a prototype RTI as shown shaded in Figure 3. This approach
corresponds to the Transport Layer Integration approach described in Section 3.2. The Network Manager translates
certain outgoing DIS PDUs (Fire, Collision, and Detonate PDUs) into FOM interactions and issues these
interactions using the RTI. Conversely, the Network Manager receives interactions from the RTI, translates them
into corresponding DIS PDUs, and processes them as if they were received from the FDDI network. For this study,

existing data flows for DIS communication were maintained for incoming DIS traffic that was not included in the
FOM (i.e., simulation management and SAF command and control protocol).

i Trangport Cayer ™ [Shared Memory

i Entity Entity Enty

47| Processor Database Datebase
: —_— AP
H Application

\ Open, Close _ Processes
: Network |~ Join, Resign NetworR

Manager | ¢ Selected PDUs 4—| AP

| DI% PDUS|
» FDDI

Figure 3. CCTT RTI Integrated Architecture

<

The modified Entity Processor collects, translates, and communicates object updates to and from the RTI. For each
locally simulated entity, this process monitors the entity updates in the Entity Database, collects those attribute
values that change beyond their dead reckoning thresholds, and sends the entity’s attributes as an RTI1 object
update. For remote entity object updates, this process receives the update and modifies the remote entity’s
attributes in the Entity Database.

Through this design each CCTT processor, containing some number of simulation applications, acts as two
federates to the RTI regardless of the number or type of applications running on that box. The Network Manager is
a federate concerned exclusively with RTI interactions while the Entity Processor is a federate concerned exclusively
with objects.

Minor modifications were made to the applications to request that the Network Manager and Entity Processor join
and resign the federation execution. A complete integration within CCTT would also require that each application
specify the objects and interactions that they can publish and subscribe.

4.0 FOM DEVELOPMENT ASSESSMENT
The FOM development and resulting performance of the federation test for this DIS study raised issues with respect
to the FOM development methodology and federate coordination. Specific lessons were learned about the FOM
development:
Deliberate tradeoffs must be made between the DIS Entity State approach to specifying entity objects and a pure
object-oriented approach.
A complete specification of syntactic, semantic, and behavioral requirements must be fully specified by the FOM
in order to maximize the chance of interoperability.

The initially developed FOM defined an object-oriented component structure for articulated parts that differed from
the typical DIS approach of specifying articulated part attributes for particular entities. For example, the FOM
defined tank, turret, and main gun object classes. During the creation of a tank, the simulation application would
create an instance of the tank, the turret, the main gun, and through parent/child attributes of each class, linked the
objects together. This approach added a level of complexity to each application since the HLA does not provide
services to help create or manage these object associations. For example, if an application receives a new occurrence
of a main gun, it must hold onto this partially specified entity until all the pieces (i.e., tank and turret) have arrived;
otherwise, the application risks never receiving the main gun information again. The result is that objects are
fragmented and each application is responsible for piecing the fragmented object together without aid of any HLA
object component services. To remove this complexity, the FOM was redesigned to include the articulated part
attributes to those classes where turrets and main guns where relevant.

A more fundamental issue with the FOM development did not appear until late into the federation testing phase of
the study. As stated earlier there was an assumption that much of the semantics specifying the conditions under
which data is transmitted and actions in response to received data were understood as specified by the DIS 2.0.4
standard. Therefore, the behavioral implications of interactions and attribute modifications were not discussed nor
recorded in the FOM. Several instances occurred during federation testing that exposed this invalid assumption.
One such example occurred when one federate’s fixed wing air dropped a laser guided bomb that destroyed a CCTT
SAF tank. Rather than relying upon an attribute update for the tank identifying it as destroyed, the other federate
expected CCTT to delete the vehicle from the environment. As a result, subsequent bombing runs bombed only
the already destroyed tank even though there were other undamaged tanks nearby.

Other behavioral and semantic inconsistencies arose during the federation test. The existence of a FOM alone does
not guarantee interoperability as shown by these federation tests. The study demonstrated that the HLA object
model template should be extended to include more semantic and behavioral specifications to ensure that all
members of the federation understand their data model requirements.

5.0 LEVEL OF EFFORT

The effort involved in re-engineering a DIS legacy simulation depends on the three dimensions described previously:
how much data is made public to the federation, how much re-engineered and new functionality is implemented
using the HLA services, and the degree to which the system’s data model is modified to match its SOM.

It is estimated that the re-engineering of the entire CCTT system using the transport level implementation approach
developed during this study will require, a rough order of magnitude, 30,000 source lines of Ada95 code. For this
study the CCTT SAF re-engineering developed 5,000 source lines of mainly Ada95 code development. This
estimate does not account for implementing any additional HLA functionality that is currently not supported by
CCTT such as the Ownership Management Services.

6.0 OPEN ISSUES FOR DIS

The HLA development has only reached its first phase and will evolve vastly over the next few years. From the
perspective of DIS platform-level legacy systems several issues remain unresolved or in progress. These issues
include real-time management, geographic filtering, HLA scalability, and FOM partitioning.

6.1 Real-time Management The ability of federates to exchange temporal information during the real-time
simulation is critical for managing the affects of highly latent networks. For example, this timing information can
be used to modify position data received late by dead reckoning the data to be consistent with the current real-time.
The RTI time management services do not support the coordination of these real-time causal relationships. Real-
time platform level simulations rely on the synchronization of their system clocks and the faithfulness of each system
to the correspondence between simulation event timings and real-time as represented by the system clock. To
ensure an accurate report of timed events for those simulations that required this information, the case study
federation chose to use the Network Time Protocol to synchronize each federate’s system clock.

6.2 Geographic Filtering HLA’s data distribution management should be evaluated as a replacement for the
current DIS geographic or “Area of Interest” filtering schemes. The capabilities of this service appear to meet the
needs of CCTT although its performance is unknown. During the reported study, this HLA service was not
available. The correct use of this capability is a subject of further study.

6.3 HLA Scalability The case study demonstrated scalability concerns due mainly to the use of a prototype RTI
whose latency did not permit experimenting with large scenarios. A “large” CCTT exercise would consist of
several hundred entities all interacting in a federation execution. The latency problems that arose during the case
study prevented any testing that would validate the RTI’s capabilities in this area. Studies are proceeding to ensure
that the HLA concept of a central distribution agent, the RTI, can be implemented so as to support real-time
federation executions with thousands of participating entities.

6.4 FOM Partitioning The CCTT SAF development also demonstrated the need for federates to be able to
simultaneously join multiple federation executions using the RTI. This capability will allow federates to share their
public data within multiple federations concurrently where each federation satisfies a specific need of the federate. For
example, CCTT would define a separate federation execution for a site’s Simulation Management, for each
concurrent exercise, and for each exercise’s SAF command and control communication. For a specific exercise, this
implementation will allow the CCTT SAF system to behave as a single federate to the federation execution
implementing an exercise. The SAF system, however, would be internally distributed (i.e., a distributed federate)
and would use a command and control FOM within its distributed HLA compliant implementation.

7.0 REFERENCES

[1] HLA Interface Specification, Defense Modeling and Simulation Office, Version 1.0, 15 August 1996.
[2] HLA Rules, Defense Modeling and Simulation Office, Version 1.0, 15 August 1996.

[3] HLA Object Model Template, Defense Modeling and Simulation Office, Version 1.0, 15 August 1996.

